Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diethyl 2-(3,4-dicyanophenyl)-2-[(2-naphthyl)methyl]malonate

Sema Öztürk Yıldırım, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {a* }}$ M. Kasım Sener, ${ }^{\text {b }}$ Makbule Burkut Koçak ${ }^{\text {b }}$ and H.-K. Fun ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul, Turkey, and ${ }^{\text {c } X \text {-ray Crystallography Unit, School }}$ of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.053$
$w R$ factor $=0.118$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The asymmetric unit of the title compound, $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$, contains two crystallographically independent molecules. The crystal structure is stabilized by intra- and intermolecular $\mathrm{C}-$ H. . O interactions.

Comment

Phthalonitriles are desirable precursors for the synthesis of phthalocyanines displaying unusual chemical, coordination or physical properties. In addition to their well known high thermal and chemical stabilities, phthalocyanines have recently become noted for their special optical and electrical properties, such as electrical conductivity, photovoltaic effects and electrochromism. Also, their use as efficient photosensitizers in obtaining singlet oxygen is becoming especially important in the photodynamic therapy (PDT) of tumours (Leznoff \& Lever, 1989-1996).

(I)

ORTEP3 (Farrugia, 1997) plots of the independent molecules A and B in the asymmetric unit of the title compound, (I), showing the atom-labelling schemes, are presented in Figs. 1 and 2, respectively. In both molecules, all the geometrical parameters agree well with literature values (Allen et al., 1987). The naphthalene ring systems of both molecules are essentially planar, the maximum deviations being 0.038 (3) \AA for atom $\mathrm{C} 10 A$ of molecule A and 0.032 (3) \AA for atom $\mathrm{C} 10 B$ of molecule B. The dihedral angle between the naphthalene plane and the benzene ring of the phthalonitrile group is $26.65(13)^{\circ}$ in molecule A and $27.63(13)^{\circ}$ in molecule B.

The crystal packing, viewed down the b axis, is shown in Fig. 3. The structure of (I) is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1).

Received 28 October 2005 Accepted 7 November 2005 Online 16 November 2005

Figure 1
One of the two independent molecules of (I), showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 10% probability level.

Figure 2
The other of the two independent molecules of (I), showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 10% probability level.

Figure 3
View, down the b axis, of the molecular packing of (I).

Experimental

The title compound was obtained through the displacement reaction of 4-nitrophthalonitrile with diethyl malonate and then in a further reaction with 1-(chloromethyl)naphthalene (Şener et al., 2005). Single crystals were obtained by slow evaporation of a solution in absolute ethanol at room temperature.

Crystal data
$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=426.46$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=15.3760(3) \AA$
$b=11.5504$ (2) \AA
$c=26.0798$ (5) \AA
$V=4631.75(15) \AA^{3}$
$Z=8$
$D_{x}=1.223 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.946, T_{\text {max }}=0.984$
54546 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.118$
$S=1.01$
6881 reflections
577 parameters

Mo $K \alpha$ radiation
Cell parameters from 6578 reflections

$$
\theta=2.2-30.0^{\circ}
$$

$\mu=0.08 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Needle, colorless
$0.68 \times 0.24 \times 0.19 \mathrm{~mm}$

6881 independent reflections
3609 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=30.1^{\circ}$
$h=-21 \rightarrow 21$
$k=-15 \rightarrow 16$
$l=-36 \rightarrow 29$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0512 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.10 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C2A-H2AA $\cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.93	2.60	$3.399(4)$	145
C7B-H7BA OO4A	0.93	2.59	$3.369(6)$	141
C14A-H14A \cdots O4A	0.93	2.43	$2.908(4)$	112
C18B-H18B \cdots O4B	0.93	2.43	$2.903(3)$	111
C25B-H25C \cdots O4B	0.97	2.38	$2.723(4)$	100

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z-\frac{1}{2}$.

organic papers

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl) and $0.97 \AA$ (methylene); $U_{\text {iso }}(\mathrm{H})=1.2$ (1.5 for methyl) times $U_{\text {eq }}$ (carrier atom). In the absence of significant anomalous dispersion effects, the Friedel pairs were averaged.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff C. C. \& Lever A. B. P. (1989-1996). Phthalocyanines: Properties and Applications. Vols. 1-4. New York: VCH.
Şener, M. K., Gül, A. \& Koçak, M. B. (2005). Dyes Pigments. Submitted.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray instruments Inc., Madison, Wisconsin, USA.

